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Abstract

We propose an arbitrary-order accurate Mimetic Finite Difference (MFD) method for the approximation of diffusion
problems in mixed form on unstructured polygonal and polyhedral meshes. As usual in the mimetic numerical
technology, the method satisfies local consistency and stability conditions, which determines the accuracy and the
well-posedness of the resulting approximation. The method also requires the definition of a high-order discrete
divergence operator that is the discrete analog of the divergence operator and is acting on the degrees of freedom.
The new family of mimetic methods is proved theoretically to be convergent and optimal error estimates for flux and
scalar variable are derived from the convergence analysis. A numerical experiment confirms the high-order accuracy of
the method in solving diffusion problems with variable diffusion tensor. It is worth mentioning that the approximation
of the scalar variable presents a superconvergence effect.
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1. Introduction

In the last decade, there has been a huge amount of work aimed at designing new discretization methods
for PDEs that work on unstructured polygonal and polyhedral meshes. General unstructured meshes appear
in various engineering applications, either as a flexible way to capture complex geometries (modeling of fluid
flows in porous medium) or as a product of mesh optimization algorithms (mesh reconnection in arbitrarily
Lagrangian-Eulerian methods). Major challenges for numerical solution of PDEs on general meshes are
simplicity of extension of two dimensional schemes to three dimensions and to arbitrarily order of accuracy.

Successful discretization methods on general meshes were developed using both finite volume (FV) [32] and
finite element (FE) frameworks [15, 16]. FV methods are natural for general meshes but historically, they were
low-order methods. Examples of FV methods for elliptic PDEs include the multi-point flux approximation
(MPFA) method [1, 2], the hybrid FV method [33] (the resulting scheme is also know as SUSHI), the discrete
duality finite volume (DDFV) method [24, 28, 35], the gradient method [31]; see also the recent review [29].
Extension of FV methods to higher order is done either by extending the discretization stencil or by enriching
the local approximation space, in a spirit of the FE method. For the elliptic PDEs, symmetry and positive
definiteness of the resulting matrices are the properties that are difficult to achieve for higher-order schemes.

On the other hand, the conventional arbitrarily order FE method on simplicial meshes preserves all
fundamental properties of elliptic PDEs. However, its extension to general meshes is a work in progress that



is based on the new idea of the virtual finite element space [5]. Other FE methods that work on general
meshes include the polygonal/polyhedral finite element method (PFEM) [46, 49, 50, 51], hybrid high-order
method [25, 26], the discontinuous Galerkin (DG) method [27], hybridized discontinuous Galerkin (HDG)
method [23], and the weak Galerkin (wG) method [38, 52, 53].

In between these two general frameworks, we find the mimetic finite difference (MFD) method [11, 14, 41,
48] which combines best properties of both frameworks. Similar to FV methods, the MFD method imposes
no critical constraints on the computational mesh which may contain all types of polygonal and polyhedral
elements, including non-convex elements. Similar to FE methods, a duality argument is the essential part
of the MFD construction which implies symmetry and positivity of matrices for schemes of any order of
accuracy. Construction of stiffness and mass matrices is unique for the mimetic framework and is based on
the stability and local consistency conditions. A by-product of these conditions is that there exists a rich
family of schemes with similar approximation properties. This remains true for mimetic schemes of simplicial
meshes. In many cases this family contains schemes with additional properties such as the discrete maximum
principle [42].

In recent years, the MFD method has been extensively developed for the solution of a wide range of
scientific and engineering problems in continuum mechanics [47], discretization of differential forms [14,
18, 48], electromagnetics [36, 40], diffusion [37], convection-diffusion [6], steady Stokes [7, 10], elasticity [4],
elliptic obstacles [3], Reissner-Mindlin plates [13], eigenvalues [21], and two-phase flows in porous media [43].
An extensive list of references can be found in book [11] and review paper [41]. Connection of low-order
MFD schemes for elliptic problems with two FV schemes has been established in [6, 30].

The MFD method considered in the aforementioned applications typically provides a low-order approx-
imation of the unknowns with, at the best, the second-order convergence for scalar unknowns. An open
issue in the development of the mimetic technology is the construction of high-order schemes, which is still
a challenging task even for two-dimensional and three-dimensional second-order elliptic problems. For pure
diffusion problems in primal form, the mimetic method in [9] is the extension to arbitrary order of accuracy
of the low-order method proposed in [17]. However, for pure diffusion problems in mixed form, a high-order
accurate formulation is still missing in the literature, although a first attempt to this direction was done
in [8, 12, 34]. In these papers, the authors present an improvement from first- to second-order accurate
discretization of the flux unknown of the MFD method in [19]. A second major issue, which impacts also the
other methods mentioned above, is the treatment of non-constant coefficients like a varying diffusion tensor
while preserving the high-order of accuracy of the approximation. To this end, we apply the technique that
was proved successful in [8, 39] for both the mixed low-order method and the high-order primal formulation
in two- and three-dimensional elliptic problems.

The goals of this work are (a) to develop a new family of arbitrary-order mimetic schemes for mixed
formulation of the elliptic PDE; (b) to present a solid theoretical framework where the convergence of
the method is proved and error estimates are derived; (c) to investigate the performance of the method
numerically by solving diffusion problems with a smoothly variable full tensor diffusion coefficient on different
types of unstructured polygonal meshes.

Flexibility on the MFD framework for selecting non-standard degrees of freedom and non-standard ap-
proximations of primary operators allows us to develop and analyze mimetic schemes tailored for particular
applications such as the Lagrangian gasdynamics [20, 41] and nonlinear elliptic PDEs with degenerate coef-
ficients [45].

The approximation of the scalar unknown and the flux is seeked in finite dimensional linear spaces of grid
functions whose definition relies on polynomial moments of degree k ≥ 0 inside each cell and of degree k+ 1
on each cell interface. We equip these finite dimensional linear spaces with suitable mimetic inner products,
whose construction is detailed in the paper. Error estimates are derived by using the mesh dependent norms
induced by these inner products and assuming that the scalar unknown is in Hk+3(Ω). These result is in
agreement with the analysis of the method considered in [8], which coincide with the method presented in
this paper for k = 0, where the scalar unknown was assumed in H3(Ω).

In this work we also present a novel ultraconvergence phenomenon that we think is related to the special
selection of the degrees of freedom. It was discovered in our numerical experiments and still needs a theoretical
explanation.
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The paper outline is as follows. The formulation of the MFD method is presented in Section 2. Preliminary
results on the approximation properties of interpolation and projection operators are reviewed in Section 3.
The convergence analysis is carried out in Section 4 for the flux variable and in Section 5 for the scalar
variable. The expected convergence rates are confirmed with the numerical experiments in Section 6. Final
remarks and conclusions are given in Section 7.

2. Mimetic finite difference formulation

Let Ω ⊂ Rd be a polygonal domain for d = 2 or a polyhedral domain for d = 3 with Lipschitz boundary
Γ. We consider the mimetic approximation of the steady diffusion problem in mixed form for the scalar
variable p and its vector flux u:

u = −K∇p in Ω, (1a)

div u = f in Ω, (1b)

p = g on Γ. (1c)

The functions f and g are, respectively, the source term and the boundary data and K is a full symmetric
tensor describing the material properties.

We set the mixed variational formulation using the functional space L2(Ω) for the scalar variable and
H(div,Ω) for the flux variable. Here, L2(Ω) is the standard space of square integrable functions defined
on Ω, and H(div,Ω) is the Sobolev space of vector-valued functions in (L2(Ω))d with square integrable
divergence.

The mixed variational formulation of problem (1a)-(1c) reads as [15]:

find (u, p) ∈ H(div,Ω)× L2(Ω) such that(
K−1u,v

)
−
(
p,div v

)
= −〈g,n · v〉 ∀v ∈ H(div,Ω) (2a)(

div u, q
)

=
(
f, q
)

∀q ∈ L2(Ω). (2b)

Dirichlet boundary conditions are expressed in the right-hand side of (2a) throughout the boundary func-
tional

〈g,n · v〉 =
∑
e⊂Γ

∫
e

gne · v dS, (3)

where ne represents the unit normal to the boundary face e ⊂ Γ pointing out of the polygonal domain Ω.
Both problems (1a)-(1c) and (2a)-(2b) with (3) are well-posed and admits a unique solution under the

usual assumptions: f ∈ L2(Ω), g ∈ H
1
2 (Γ), K strongly elliptic with the components in L∞(Ω). We recall

that the tensor field K is strongly elliptic if there are two positive constants κ∗ and κ∗ such that:

κ∗||v||2 ≤ vTKv ≤ κ∗||v||2 ∀v ∈ Rd. (4)

For the convergence analysis of Sections 4 and 5, we need the stronger regularity assumption that for every
mesh cell the components of K is locally in W k+2,∞.

To formulate the mixed mimetic approximation of problem (2a)-(2b), we need to introduce a few mathe-
matical objects, whose precise definition will be presented in the rest of this section. On a sequence of mesh
partitions of Ω satisfying some regularity assumptions and characterized by the mesh size parameter h, we
consider the discrete analogs ph, qh and fh of the scalar functions p, q and f , and uh, vh of the vector
functions u, v. We assume that ph and qh belong to the linear space Qh, which is referred to as the space
of the scalar grid functions, and that uh and vh belong to the linear space Xh, which is referred to as the
space of the flux grid functions. The grid functions in Qh and Xh are vectors of numbers, the degrees of
freedom, and will be used to approximate pressure and flux, respectively. We equip Xh and Qh with the
mimetic inner products

[
·, ·
]
Xh

and
[
·, ·
]
Qh

. The discrete mimetic gradient operator GRAD : Qh → Xh can
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be introduced to approximate the gradient operator ∇ and defined as GRAD = −DIV ∗, i.e., as the adjoint
DIV ∗ of the discrete divergence operator DIV : Xh → Qh that approximates the divergence operator div .
As it was show in [19], the discrete gradient operator leads to an equivalent weak formulation that has a
saddle-point structure. For this reason, we do not introduce the discrete gradient operator here, but we
consider the formulation with the discrete divergence operator.

Now, the mixed MFD method reads as:

find (uh, ph) ∈ Xh ×Qh such that[
uh,vh

]
Xh
−
[
ph,DIVvh

]
Qh

= −〈g,vh〉h ∀vh ∈ Xh, (5a)[
DIVuh, qh

]
Qh

=
[
fh, qh

]
Qh

∀qh ∈ Qh. (5b)

The Dirichlet boundary condition (1c) is expressed in the right-hand side of (5a) by

〈g,vh〉h =
∑
e⊂Γ

∫
e

g ṽ eh dS, (6)

where the boundary function ṽ eh is the polynomial interpolation in Pk+1(e) built using the degrees of freedom
of vh on e.

2.1. Notation and basic assumptions

Let Ωh be a partition of the domain Ω consisting of polygons for d = 2 and polyhedra for d = 3. We denote
by Eh the set of all the edges/faces in Ωh, and let Eh0 = Eh\∂Ω the set of all interior edges/faces. For every
polygon/polyhedron E ∈ Ωh, we denote by |E| its Lebesgue measure (area/volume), by ∂E its boundary,
and by hE its diameter. Similarly, for every edge/face e ∈ Eh, we denote by |e| the measure (lenght/area) of
e, by he its characteristic lenght, and by ne its unit normal vector, whose orientation is assumed once and
for all. When e is considered on the boundary of cell E, its normal vector is denoted by nE,e and is always
pointing out of E. When d = 2, we take he = |e|, while, for d = 3, we take he equal to the diameter of the
polygonal face e. We use ξ and (ξ, η) to denote local Cartesian coordinates defined on e for d = 2 and 3,
respectively. We also set as usual the mesh size of Ωh by

h = max
E∈Ωh

hE .

We assume that all the elements of Ωh are closed and simply connected subset of Rd, all polyhedral faces
are flat and all mesh edges are straight segments.

The analysis of the mimetic finite difference method requires some regularity assumptions for the sequence
of partitions {Ωh}h when h→ 0, which we list below only for d = 3 (for d = 2 they are readily obtained by
reduction).

- (HG) Star-shape regularity : there exist a positive integer number Ns and a positive real number ρs > 0
such that every mesh Ωh admits a sub-partition Sh into shape-regular tetrahedra such that:
- (HG1) every polyhedron E ∈ Ωh has Lipschitz boundary ∂E and admits a decomposition ShE made of

less than Ns tetrahedra;
- (HG2) the shape regularity of the tetrahedra E ∈ ShE is defined as follows: the ratio between the radius
rT of the inscribed ball and the diameter hT of the tetrahedron T is bounded from below by ρs.

- (HG3) There exists a positive number τ∗ such that each element is star-shaped with respect to all points
of a ball of radius τ∗hE centered at an internal point of E.

From the above assumptions several properties of the mesh, which are useful in the analysis of the MFD
scheme, can be derived. We list them below for the sake of the reader’s convenience and for future reference
in the paper; proofs can be found in [11].
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- (M1) There exist two integer numbers NF and NE such that every element E has at most NF faces and
every face has at most NE edges.

- (M2) There exists a constant a∗ independent of hE and the mesh Ωh such that

a∗hd−1
E ≤ |e| , a∗hE ≤ he, a∗hE ≤ |l | ,

where l ∈ ∂E is an edge of the polygonal boundary of face e. Roughly speaking, we state that for every
element the area of each element’s face and the lenght of each element’s edge scale properly with respect
to the element’s diameter.

- (M3) Agmon inequality : there exists a constant CAgm independent of hE and the mesh Ωh such that∑
e∈∂E

||φ||20,e ≤ CAgm
(
h−1
E ||φ||

2
0,E + hE |φ|21,E

)
for any function φ ∈ H1(E).

- (M4) Local interpolation: let m ≥ 0 be an integer number. For any function q ∈ Hm+3(E) there exists
a local polynomial approximation of degree m + 2 defined on E, which we denote by q̂ . The following
estimate of the interpolation error also holds

||q − q̂ ||0,E +

m+2∑
l=1

hlE |q − q̂ |l,E ≤ CIntphk+3
E |q|m+3,E , (7)

where CIntp > 0 is a constant independent of hE .

Remark 2.1 The constants NF , NE , a∗, CAgm and CIntp, which appear in (M1)-(M4) above, may only
depend on the constants Ns and ρs of (HG) and the shape of the domain Ω. Assumption (HG3) is used in
the analysis section, e.g. in Lemma 3.1.

Throughout the paper, we will make use of the standard notation for Sobolev spaces; hence, if l > 0 is an
integer number and D is Ω or a cell E, then H l(D) denotes the space of square integrable functions with
square integrable derivatives up to order l defined on D. The usual definition also holds for L2(D), || · ||0,D,
| · |0,D, and H(div, D). We will also use the functional space of vector fields:

VΩh
=
{
v ∈ H(div,Ω) such that v|E ∈ H(div, E) ∩

(
Ls(E)

)d
with s > 2 for every E ∈ Ωh

}
, (8)

where v|E is the restriction of v to E. The regularity that is required to the vector fields in VΩh
is stronger

than just being in H(div,Ω) and is needed to define the interpolation of ne ·v on a single edge/face e ∈ Eh.
An explanation can be found in [15].

2.2. Polynomial spaces and orthogonal basis functions

We will find it convenient to consider two different kinds of polynomial spaces, respectively defined on the
mesh cells and the mesh edges/faces.

For the mesh cell E and the non-negative integer number l, Pl(E) is the space of the polynomial functions
defined on E with degree at most l. The dimension of Pl(E) is equal to nEl = (l + 1)(l + 2)/2 for d = 2
and nEl = (l+ 1)(l+ 2)(l+ 3)/6 for d = 3. The set of nEl basis functions {ϕE,i}i=0,...,nE

l
−1 that satisfies the

orthogonality condition ∫
E

ϕE,iϕE,j dV = |E| δij

generates Pl(E). We assume that ϕE,0 = 1. The polynomial functions ϕE,i are practically built by the
Gram-Schmidt orthogonalization process applied to the monomials 1, x, y, x2, etc, after translation to the
barycenter xE and rescaling by hE .

We define the projection ΠE
l (φ) ∈ Pl(E) of a scalar function φ ∈ L2(E) by the orthogonality relation∫
E

(
ΠE
l (φ)− φ

)
ϕdV = 0 for every ϕ ∈ Pl(E),

5



k=0 k=1

k=2 k=3

Fig. 1. Degrees of freedom for 0 ≤ k ≤ 3 on a polygonal cell; for each polynomial degree k we show the flux degrees of freedom
on the left and the scalar degrees of freedom on the right. The edge/face moments of the normal component of the flux are

denoted by a vertical line; the cell moments are denoted by a bullet.

and the projection ΠE
l (φ) ∈ (Pl(E))d of the vector function φ ∈ (L2(E))d by the orthogonality relation∫

E

(
ΠE
l (φ)− φ

)
·ϕ dV = 0 for every ϕ ∈

(
Pl(E)

)d
(for simplicity of notation, we use the same symbol “ΠE

l ”).

Likewise, for the mesh edge/face e and the non-negative integer number l, Pl(e) is the space of the
polynomial functions defined on e with degree at most l. The dimension of Pl(e) is equal to nel = l + 1
for d = 2 and nel = (l + 1)(l + 2)/2 for d = 3. The set of nel functions {ϕe,i}i=0,...,ne

l
−1 that satisfies the

orthogonality condition ∫
e

ϕe,iϕe,j dS = |e| δij

generates Pl(e). For d = 2, the polynomial functions ϕe,i are practically built by translating and rescaling the
Legendre polynomials, which are normally defined on the interval [−1, 1], over the edge e. For d = 3, on each
two-dimensional face we apply the Gram-Schmidt orthogonalization process to the monomials 1, ξ, η, ξ2, etc,
where (ξ, η) are the local coordinates of the face.

We define the projection Πe
l (φ) ∈ Pl(e) of the scalar function φ ∈ L2(e) by the orthogonality relation∫
e

(
Πe
l (φ)− φ

)
ϕdS = 0 for every ϕ ∈ Pl(e).

Remark 2.2 Using orthogonal basis functions to generate Pl(E),
(
Pl(E)

)d
, and Pl(e) significantly sim-

plifies the implementation and calculation of the projection operators ΠE
l and Πe

l .

2.3. Scheme Formulation

2.3.1. Degrees of freedom
Hereafter, we denote the degree of the polynomials that are used in each cell to construct Qh and Xh

by k and on each mesh edge/face by k + 1, where k is a non-negative integer number. Scalar variables and
fluxes are represented in the discrete setting by the elements of Qh and Xh, respectively, which are linear
spaces with the usual rules of addition and multiplication by a scalar number. The degrees of freedom are
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associated with the edges/faces and the interior of the cells as follows. The meaning of these degrees of
freedom will become clear in the next subsection, when we define the interpolation operators.

– Scalar variables. We associate the degrees of freedom of the scalar variable to the mesh cells so that

qh ∈ Qh means that qh =
{
{qE,0, · · · qE,nE

k
−1}E∈Ωh

}
(9)

with qE,i ∈ R. The dimension of Qh is equal to nEk × number of cells. The restriction of the grid function
qh to cell E is given by the set of nEk real numbers

{
qE,0, · · · qE,nE

k
−1

}
and denoted by qE . The restriction

operator that gives the “E, i”-th degree of freedom of qh is denoted by ( · )E,i, i.e., qE,i = (qh)E,i.

– Fluxes. We associate the degrees of freedom of the flux field to the mesh edges/faces and the mesh cells
so that

vh ∈ Xh means that vh =
{{
ve,0, . . . ve,ne

k+1
−1

}
e∈Eh

,
{
vE,1, . . . , vE,nE

k
−1

}
E∈Ωh

}
(10)

with ve,i, vE,i ∈ R. The dimension of Xh is given by nek+1 × number of edges (2D) or faces (3D) + (nEk −
1) × number of cells. The edge/face degrees of freedom of the flux grid function vh related to e form
the set of real numbers

{
ve,0, . . . ve,ne

k+1
−1

}
, which we denote by ve. Similarly, cell degrees of freedom of

vh related to the cell E form the set of real numbers
{
vE,1, . . . , vE,nE

k
−1

}
, which we denote by vE . The

restriction of vh to the mesh cell E, denoted by vE , consists of both cell and edge/face degrees of freedom,
i.e., vE = vh|E = ({ve}e∈∂E , vE). The restriction operators that give the “E, i”-th and “e, i”-th degrees
of freedom of the vector grid function vh are respectively denoted by ( · )E,i and ( · )e,i, i.e., vE,i = (vh)E,i
and ve,i = (vh)e,i.

2.3.2. Interpolation operators
The local interpolant of the scalar function q ∈ L2(E) is the grid function qIE ∈ QE whose components

are the moments of q with respect to the orthogonal polynomials ϕE,i of degree up to k:

qIE,i :=
(
qI
)
E,i

=
1

|E|

∫
E

q ϕE,i dV for i = 0, . . . , nEk − 1, ∀E ∈ Ωh. (11)

The global interpolant of q is the grid function qI of Qh whose restriction to each cell E coincides with the
local interpolant qIE .

The local interpolant of the vector field v ∈ H(div, E)∩(Ls
(
E)
)d

with s > 2 is the grid function vI
E ∈ XE

whose components are
– the moments of v with respect to ∇ϕE,i, the gradients of the orthogonal polynomials forming a basis of
Pk(E):

vIE,i :=
(
vI
)
E,i

=
1

|E|

∫
E

v · ∇ϕE,i dV, for i = 1, . . . , nEk − 1, ∀E ∈ Ωh; (12)

– the moments of ne ·v for each edge/face e ∈ ∂E with respect to the orthogonal polynomials {ϕe,i} forming
a basis of Pk+1(e):

vIe,i :=
(
vI
)
e,i

=
1

|e|

∫
e

ne · vϕe,i dS, for i = 0, . . . , nek+1 − 1, ∀e ∈ Eh. (13)

The moments considered in (12) and (13) provide as many independent conditions on v as the dimension of
Xh|E, the restriction of Xh to cell E. The global interpolant of v ∈ VΩh

is the grid function vI of Xh whose
restriction to each cell E coincides with the local interpolant vI

E (we recall that VΩh
is defined in (8)).

Remark 2.3 The degrees of freedom associated with edge/face e are the discrete representation of the
normal flux associated with that edge/face. For each internal edge/face e ⊆ ∂E′ ∩ ∂E′′, i.e., shared by the
polygons E′ and E′′, the degrees of freedom are the same for both adjacent polygons and the continuity of
the normal flux across e is automatically satisfied. This construction is consistent with the continuity of the
normal component ne · v of a vector function v ∈ H(div,Ω).
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Remark 2.4 The definition of the interpolation operator for the scalar variable suggests the following piece-
wise polynomial representation using the degrees of freedom of the grid function qh and the orthogonal poly-
nomials ϕE,i inside each cell E ∈ Ωh:

q̃h(x) =

nE
k −1∑
i=0

qE,iϕE,i(x) for x ∈ E. (14)

Obviously, it holds that qh = (q̃h)I. When qh = qI, the restriction of q̃h to E is the L2 orthogonal projection

of q onto Pk(E), i.e., (̃qIE) = ΠE
k (q). Hereafter, the symbol “tilde”, e.g., ·̃ indicates a polynomials that is

built by linear combination of the orthogonal basis functions using the degrees of freedom as coefficients.

Remark 2.5 The definition of the interpolation operator for the flux variable suggests the following piece-
wise polynomial representation on each edge/face e using the corresponding degrees of freedom of vh and the
orthogonal polynomials ϕe,i

ṽ eh (ξ) =

ne
k+1−1∑
i=0

ve,iϕe,i(ξ) for ξ ∈ e.

When vh = vI, the polynomial ṽ eh is the L2 orthogonal projection of ne · v onto Pk+1(e), i.e., ˜(nE,e · v)I =
Πe
k+1(nE,e · v).

2.3.3. Discrete divergence operator
The discrete divergence operator DIV : Xh → Qh is defined cell-wise from the commutation property:

DIVvI =
(
div v

)I
for every v ∈ VΩh

. (15)

The right-hand side of (15) is computable on each cell E by using only the degrees of freedom of vI
E . Indeed,

an integration by parts yields:(
div v

)I
E,i

=
1

|E|

∫
E

(
div v

)
ϕE,i dV =

1

|E|

(
−
∫
E

v · ∇ϕE,i dV +
∑
e∈∂E

∫
e

nE,e · vϕE,i dS

)
,

for i = 0, . . . , nEk −1. Moreover, taking i = 0 in the development above shows that our definition is consistent
with the Gauss divergence theorem. Since

(
DIVvh

)
E

, the restriction of DIVvh to E, belongs to QE , we
can consider the polynomial representation in Pk(E) given by

D̃IVvh(x) =

nE
k −1∑
i=0

(
DIVvh

)
E,i
ϕE,i(x) for x ∈ E,

and, clearly, when vh = vI it holds that ˜DIVvI|E = ΠE
k (div v).

Finally, suppose that uh is the mimetic flux solving (5a)-(5b) and uI is the interpolant of the flux u
solving problem (1a)-(1c). For every qh ∈ Qh it holds that[

DIVuh, qh
]
Qh

=
[
fI, qh

]
Qh

=
[(

div u
)I
, qh
]
Qh

=
[
DIVuI, qh

]
Qh
,

from which we obtain the orthogonality property :[
DIV (uh − uI), qh

]
Qh

= 0 for every qh ∈ Qh. (16)

This property is used in the error analysis of Section 4.

2.3.4. Mimetic inner product for scalar grid functions
We define the mimetic inner product in Qh by assembling the mimetic inner products that are locally

defined on every cell E:
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[
ph, qh

]
Qh

=
∑
E∈Ωh

[
ph, qh

]
E

=
∑
E∈Ωh

|E|
nE
k −1∑
i=0

pE,iqE,i for every ph, qh ∈ Qh. (17)

We also denote the mesh-dependent norm induced by the local mimetic inner product in QE by ||| · |||
E

and
the mesh-dependent norms induced by the global inner product in Qh by ||| · |||

Qh
.

Relation (17) corresponds to the L2-scalar product for piecewise polynomial functions of degree k associ-
ated with ph and qh. Indeed,∫

E

q̃h p̃h dV =

nE
k −1∑
i,j=0

qE,ipE,i

∫
E

ϕE,i ϕE,j dV =

nE
k −1∑
i,j=0

qE,ipE,i |E| δij = |E|
nE
k −1∑
i=0

pE,iqE,i. (18)

Consequently, for any pair of square integrable functions q and p, the mimetic inner product of their local
interpolants qIE and pIE is equal to the L2 inner products of their orthogonal projection on the polynomial
space Pk(E). Using the global interpolations, we have the formal relation[

pI, qI
]
Qh

=
∑
E∈Ωh

∫
E

ΠE
k (p)ΠE

k (q) dV for every p, q ∈ L2(Ω). (19)

2.3.5. Mimetic inner product for flux grid functions
We define the mimetic inner product in Xh by assembling the element-wise contribution from each mesh

element E [
uh,vh

]
Xh

=
∑
E∈Ωh

[
uh,vh

]
E

for every uh,vh ∈ Xh. (20)

We also denote the mesh-dependent norm induced by the local mimetic inner product in XE by ||| · |||
E

and
the mesh-dependent norm induced by the global inner product in Xh by ||| · |||

Xh
.

Remark 2.6 We abuse the notation by using the same symbols [·, ·]E and ||| · |||
E

to denote the local in-
ner products and norms for scalar and vector grid functions. Note that these operators are contextually
determined by the nature of their arguments without any ambiguity.

Moreover, both [ ·, · ]E and ||| · |||
E

only depends on the degrees of freedom of cell E. We will keep this
dependence implicit through the more elegant notation

[
ph, qh

]
E

and |||qh|||E for scalars and
[
uh,vh

]
E

and

|||vh|||E for vectors instead of
[
(ph)E , (qh)E

]
E

,
[
(uh)E , (vh)E

]
E

or
[
pE , qE

]
E

,
[
uE ,vE

]
E

, and |||(qh)E |||E ,
|||qE |||E or |||(vh)E |||E , |||vE |||E , which are more precise but also more cumbersome.

Now, we present the construction of the local mimetic inner product for fluxes. Consider the cell E and
the functional space of vector fields SΩh

, which is a sub-space of VΩh
and is defined as

SΩh
=
{

v ∈ VΩh
such that (div v)E ∈ Pk(E), nE,e · v ∈ Pk+1(e) for every E ∈ Ωh

}
.

The local inner product
[
·, ·
]
E

is required to satisfy the two following conditions:

- (S1) stability : there exist two constants σ∗, σ
∗ > 0 independent of h such that

σ∗ |E| |vh|2E ≤
[
vh,vh

]
E
≤ σ∗ |E| |vh|2E (21)

for all vh ∈ XE , where

|vh|2E = h2
E

nE
k −1∑
i=0

|vE,i|2 +
∑
e∈∂E

ne
k+1−1∑
i=0

|ve,i|2 . (22)

- (S2) local consistency : for every polynomial q ∈ Pk+2(E) and every function v ∈ SΩh
it holds:[(

ΠE
k+1

(
K∇q

))I
,vI
]
E

=

∫
E

∇q · v dV. (23)
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Since v ∈ SΩh
, we integrate by parts (23) on cell E and note that in the right integrals we can substitute

div v and v · nE,e with the projections ΠE
k (div v) and ΠE

k+1(v · nE,e) and then with D̃IVvI and (ṽI)e:[(
ΠE
k+1

(
K∇q

))I
,vI
]
E

= −
∫
E

qdiv v dV +
∑
e∈∂E

∫
e

v · nE,e q dS

= −
∫
E

qΠE
k (div v) dV +

∑
e∈∂E

∫
e

Πe
k+1(v · nE,e) q dS

= −
∫
E

qD̃IVvI dV +
∑
e∈∂E

∫
e

(ṽI)e q dS.

Thus, for any grid function vh ∈ XE , we consider the formula:[(
ΠE
k+1

(
K∇q

))I
,vh

]
E

= −
∫
E

qD̃IVvh dV +
∑
e∈∂E

∫
e

ṽ eh q dS. (24)

Remark 2.7 Local consistency can also be defined by directly assuming that[(
ΠE
k+1

(
K∇q

))I
,vI
]
E

= −
∫
E

qD̃IV vI dV +
∑
e∈∂E

∫
e

(ṽI)e q dS. (25)

for every polynomial q ∈ Pk+2(E) and every function v ∈ VΩh
. This definition is equivalent to (S2) as it

leads to the same family of mimetic schemes and is the straightforward generalization of the consistency
condition that was considered in [8, 19]. Condition (S2) emphasizes the fact that the local consistency is
an exactness property while (25) emphasizes the connection with a discrete integration by parts formula.
Moreover, it is worth noting that the definition of the weak gradient in the weak Galerkin method is very
similar to the right-hand side of (25), cf. [52].

The mimetic inner product in XE is given by the nEk+1 × nEk+1 symmetric and positive definite matrix
ME : [

uh,vh
]
E

= (uE)TMEvE , (26)

where uE and vE are the vectors of degrees of freedom of uh and vh pertinent to E. The convergence
properties of the MFD method only depend on the fact that the local scalar product satisfies Assump-
tions (S1)-(S2), and not on the specific form of matrix ME . The construction of matrix ME is carried out
through the auxiliary matrices N and R. The i-th columns of N (for i = 1, . . . , nEk+2 − 1), denoted by Ni, is
given by

Ni =
(

ΠE
k+1

(
K∇ϕE,i

))I
. (27)

The i-th columns of R (for i = 1, . . . , nEk+2 − 1), denoted by Ri, is such that

vTERi = −
∫
E

D̃IVvhϕE,i dV +
∑
e∈∂E

∫
e

ṽ eh ϕE,i dS for every vE ∈ XE . (28)

Matrix ME is given by the usual formula for the mimetic inner product matrix:

M = M0 + M1 = R(NTR)−1RT + µE(I− N(NTN)−1NT ), (29)

where µE is a scalar factor, usually the trace of matrix M0. Matrices M0 and M1 ensure the consistency and
stability properties of the method stated in (S2) and (S1), respectively. Formula (29) provides a convenient
choice of the mimetic inner product for the practical implementation in a computer code. Nonetheless, a
wider family of mimetic inner products exists that satisfies the stability and consistency conditions above [11].
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Remark 2.8 For constant tensors K, we can further simplify (23) by removing the projection ΠE
k+1 from

the left-hand side: [(
K∇q

)I
,vI
]
E

=

∫
E

∇q · v dV. (30)

Take q = ϕE,i and v = ∇ϕE,j in (23) or (30); as NTMN = NTR we immediately have the identities∫
E

∇ϕE,i · ∇ϕE,j dV = (NTR)ij = NTi Rj .

Since i and j start from 1, matrix NTR is symmetric and positive definite and, thus, non-singular. Hence,
(NTR)−1 is well defined in formula (29).

Remark 2.9 The factor h2
E that multiplies each |vE,i|2 in (22) is needed to make the two summation

terms in the right-hand side to scale consistently with respect to hE. This requirement is a consequence of
the normalization of the orthogonal polynomials that we use to define the cell and the edge/face degrees of
freedom. We could remove this factor by renormalizing ∇ϕe,i in the definition of vI

e,i in (13). However, the
normalization of the same polynomial basis of Pk(E) would be different in the definition of QE and XE,
which might be source of errors and confusion.

Remark 2.10 The mimetic inner product between the two flux grid functions uI and vI that interpolate the
vector fields u and v is an approximation of the K−1-weighted L2-scalar product between these two vectors
for any cell E ∈ Ωh: [

uI,vI
]
E
≈
∫
E

K−1u · v dV,

and, consequently, for the whole domain Ω:[
uI,vI

]
Xh
≈
∫

Ω

K−1u · v dV.

From the previous discussion, it should be clear that for a constant K this approximation is exact whenever
both vectors are the gradient of a polynomial of degree k+ 1. The information about K−1 is embedded inside[
·, ·
]
Xh

. In the matrix formula (29), K−1 affects matrix M0 through (NTR)−1, since N contains K in its

definition, and matrix M1 through the choice of the scaling factor µE.

2.4. Well-posedness

Since the bilinear form
[
·, ·
]
Xh

in (20) is an inner product, it is coercive on the whole space Xh, and

therefore on the kernel of the discrete divergence operator DIV . The well-posedness of the mimetic method
follows from this fact and the discrete inf-sup condition that will be proved in subsection 5.2; see [15].

3. Estimates for interpolation and projection operators

To ease the notation, we use the symbol “.” to denote “≤ C”, i.e., “less than or equal to up to the constant
C”, where C is strictly positive and independent of the mesh size h, variables or other parameters of the
inequality. By accurately tracing back the different constants as they appear in the proofs, it is immediate
to see that all such constants may depend only on the mesh regularity constants in (M1)-(M4), the strong
ellipticity constants κ∗ and κ∗, the norm ||K||k+2,∞,E , and the stability constants σ∗ and σ∗.

Lemma 3.1 Let E be a mesh element of Ωh, e a mesh edge/face in Eh, l a non-negative integer and q a
function in H l+1(E). Under assumption (HG), we have

||q −ΠE
l (q)||0,E + hE ||∇

(
q −ΠE

l (q)
)
||0,E . hl+1

E |q|l+1,E

||q −Πe
l (q)||0,e . hl+1

e |q|l+1,e.

11



Proof. These estimates are the consequence of the mesh regularity assumptions that make it possible to use
standard results from polynomial approximation in Sobolev spaces in star-shaped domains [16].

Lemma 3.2 Let E be a mesh element, e be a mesh edge/face that belongs to ∂E, and q be a function in
Hk+3(E) for k non-negative integer. From assumption (HG) and Kij ∈W k+2,∞(E), it follows that

||q − q̂ ||20,E + hE
∑
e∈∂E

||q − q̂ ||20,e . h
2(k+3)
E ||q||2k+3,E (31a)

||K∇q −ΠE
k+1(K∇q̂ )||20,E + hE

∑
e∈∂E

||K∇q −ΠE
k+1(K∇q̂ )||20,e . h

2(k+2)
E ||q||2k+3,E (31b)

where q̂ is the polynomial interpolant of degree k + 2 of q on E defined in (M4).
Proof. Inequality (31a) follows directly from combining (M3) and (M4).

To prove inequality (31b) we add and subtract K∇q̂ to the two terms of the left-hand side and use the
triangle inequality to obtain:

||K∇q −ΠE
k+1(K∇q̂ )||20,E . ||K∇(q − q̂ )||20,E + ||K∇q̂ −ΠE

k+1(K∇q̂ )||20,E (32)

and, similarly,

||K∇q −ΠE
k+1(K∇q̂ )||20,e . ||K∇(q − q̂ )||20,e + ||K∇q̂ −ΠE

k+1(K∇q̂ )||20,e. (33)

The right-hand side of (32) is bounded by applying standard estimates from polynomial interpolation theory
and noting that ||q̂ ||k+2,E . ||q||k+2,E (recall that q̂ is the polynomial interpolant of q of degree k + 2):

||K∇(q − q̂ )||20,E + ||K∇q̂ −ΠE
k+1(K∇q̂ )||20,E . h

2(k+2)
E (κ∗)2||q||2k+3,E + h

2(k+2)
E ||K∇q̂ ||2k+2,E

. h
2(k+2)
E max(κ∗, ||K||k+2,∞,E)2||q||2k+3,E .

The first term in the right-hand side of (33) is bounded by applying the Agmon inequality with φ = K∇(q−q̂ )
and then using the estimate for the interpolation error:∑
e∈E
||K∇(q − q̂ )||20,e . h−1

E ||∇(q − q̂ )||20,E + hE |∇(q − q̂ )|21,E . h−1
E

(
hk+2
E |q|k+3,E

)2
+ hE

(
hk+1
E |q|k+3,E

)2
. h2k+3

E |q|2k+3,E .

The second term in the right-hand side of (33) is bounded by applying the Agmon inequality with φ =
K∇q̂ − ΠE

k+1(K∇q̂ ), applying the error estimate for ΠE
k+1 of the previous lemma, and noting that Kij ∈

W k+2,∞(E):∑
e∈∂E

||K∇q̂ −ΠE
k+1(K∇q̂ )||20,e . h−1

E ||K∇q̂ −ΠE
k+1(K∇q̂ )||20,E + hE |K∇q̂ −ΠE

k+1(K∇q̂ )|21,E

. h−1
E

(
hk+2
E |K∇q̂ |k+2,E

)2
+ hE

(
hk+1
E |K∇q̂ |k+2,E

)2
. h2k+3

E ||K||2k+2,∞,E ||q||2k+2,E .

To estimate the norms and seminorms of K∇q̂ we needed the stronger regularity of K, which we indicates
explicitly through the factor ||K||k+2,∞,E . The quantity max(κ∗, ||K||k+2,∞,E) that would appear in the final
inequality is absorbed by the . notation in the assertion of the lemma.

Lemma 3.3 Let E be a mesh element, v a function in
(
H1(E)

)d
and vI its interpolation in XE. Then, it

holds that

|||vI|||2
E
. ||v||20,E + hE

∑
e∈∂E

||v||20,e . ||v||20,E + h2
E |v|21,E . (34)
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Proof. In view of (S1), we only need to prove that

|E| |vI|2E . ||v||20,E + hE
∑
e∈∂E

||v||20,e . ||v||20,E + h2
E |v|21,E ,

where |vI|E is defined in (22) (take vh = vI). First, note that

|E|h2
E

∣∣vIE,i∣∣2 = |E|h2
E

∣∣∣∣ 1

|E|

∫
E

v · ∇ϕE,i dV
∣∣∣∣2 ≤ ||v||20,E h2

E

|E|
||∇ϕE,i||20,E . ||v||20,E ,

since h2
E ||∇ϕE,i||20,E . |E|. From the orthogonality of the basis functions ϕe,i it follows that:

|e|
ne
k+1−1∑
i=0

∣∣vIe,i∣∣2 =

ne
k+1−1∑
i,j=0

vIe,iv
I
e,j |e| δij =

ne
k+1−1∑
i,j=0

vIe,iv
I
e,j

∫
e

ϕe,iϕe,j dS

=

∫
e

( ne
k+1−1∑
i=0

vIe,iϕe,i

)( ne
k+1−1∑
j=0

vIe,jϕe,j

)
dS =

∫
e

∣∣(ṽI)e∣∣2 dS = ||(ṽI)e||20,e.

The mesh regularity implies that |E| . |e|hE . Therefore, as (ṽI)e is the L2 projection of ne · v in Pk+1(e),
we obtain:

|E|
ne
k+1−1∑
i=0

∣∣vIe,i∣∣2 . hE ||(ṽI)e||20,e . hE ||Πe
k+1(nE,e · v)||20,e . hE ||nE,e · v||20,e . hE ||v||20,e.

The second inequality in (34) is a consequence of Agmon inequality.

Lemma 3.4 Let E be a mesh element, e be a mesh edge/face that belongs to ∂E, and q be a function in
Hk+3(E) for k non-negative integer. From assumption (HG) and Kij ∈W k+2,∞(E), it follows that

|||
(
K∇q −ΠE

k+1(K∇q̂ )
)I|||

E
. hk+2

E ||q||k+3,E (35)

where q̂ is the polynomial interpolant of degree k + 2 of q on E defined in (M4).
Proof. Combine the first inequality of Lemma 3.3 with v = K∇q −ΠE

k+1(K∇q̂ ) and estimate (31b):

|||
(
K∇q −ΠE

k+1(K∇q̂ )
)I|||2

E
. ||K∇q −ΠE

k+1(K∇q̂ )||20,E + hE
∑
e∈∂E

||K∇q −ΠE
k+1(K∇q̂ )||20,e

. h
2(k+2)
E ||q||2k+3,E .

This ends the proof of the lemma.

4. Convergence of the flux variable

The result of this section is the following convergence theorem for the approximation of the flux variable.
Theorem 4.1 Let (u, p) be the exact solution of Problem (1a)-(1c) with p ∈ Hk+3(Ω), where k is a non-
negative integer number. Let (uh, ph) ∈ Xh × Qh be the solution of (5a)-(5b) under assumption (HG).
Then,

|||uI − uh|||Xh
. hk+2

∣∣∣∣p∣∣∣∣
k+3,Ω

. (36)

Proof. Denote εh = uI − uh. Using the orthogonality property (16) in (5a) (with vh = uI − uh) yields:[
uh, εh

]
Xh

= −〈g, εh〉h (37)
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Let p̂ be the piecewise polynomial interpolant of degree k + 2 of p defined on Ωh in accordance with (M4),
i.e., p̂E = p̂ |E interpolates the restriction of p to E in Pk+2(E). Starting from the definition of the norm
||| · |||

Xh
we have the development:

|||εh|||2Xh
=
[
uI, εh

]
Xh
−
[
uh, εh

]
Xh

[
use (37)

]
=
[
uI, εh

]
Xh

+ 〈g, εh〉h
[
use uI = (−K∇p)I

]
=
[
(−K∇p)I, εh

]
Xh

+ 〈g, εh〉h
[
use (20)

]
=
∑
E∈Ωh

[
(−K∇p)I, εh

]
E

+ 〈g, εh〉h
[
add and subtract

(
ΠE
k+1(∇p̂ )

)I]
= A1 + A2

where

A1 =
∑
E∈Ωh

[
(−K∇p)I +

(
ΠE
k+1(K∇p̂ )

)I
, εh
]
E
,

A2 = −
∑
E∈Ωh

[(
ΠE
k+1(K∇p̂ )

)I
, εh
]
E

+ 〈g, εh〉h .

The proof continues by estimating the error terms A1 and A2 separately.

We first derive an upper bound for A1. From the Cauchy-Schwartz inequality and Lemma 3.4 it follows
that[

(−K∇p)I +
(
ΠE
k+1(K∇p̂ )

)I
, εh
]
E
≤ |||(−K∇p)I +

(
ΠE
k+1(K∇p̂ )

)I|||
E
|||εh|||E . hk+2

E ||p||k+3,E |||εh|||E .
(38)

Then, we sum over all the mesh cells and use again the Cauchy-Schwarz inequality to estimate A1:

|A1| .
∑
E∈Ωh

hk+2
E ||p||k+3,E |||εh|||E . hk+2

( ∑
E∈Ωh

||p||2k+3,E

)1/2( ∑
E∈Ωh

|||εh|||2E

)1/2

. hk+2||p||k+3,Ω |||εh|||Xh
. (39)

To derive an upper bound for term A2, first observe that the consistency condition (S2) and the orthogo-
nality property (16) imply that [(

ΠE
k+1(K∇p̂ )

)I
, εh
]
E

=
∑
e∈∂E

∫
e

p̂ ε̃ eh dS. (40)

Furthermore, the trace of p ∈ Hk+3(Ω) is continuous at every internal face and ε̃ eh takes opposite values at
the sides of every internal face so that∑

E∈Ωh

∑
e∈∂E

∫
e

pε̃ eh dS = 〈p, εh〉h . (41)

Now, we use (20) and identities (41) and (40) and the Cauchy-Schwarz inequality twice to obtain[(
ΠE
k+1(K∇p̂ )

)I
, εh
]
Xh
− 〈p, εh〉h =

∑
E∈Ωh

[(
ΠE
k+1(K∇p̂ )

)I
, εh
]
E
−
∑
E∈Ωh

∑
e∈∂E

∫
e

pε̃ eh dS

=
∑
E∈Ωh

∑
e∈∂E

∫
e

(
p̂ − p

)
ε̃ eh dS ≤

∑
E∈Ωh

∑
e∈∂E

||p̂ − p||0,e ||εh||0,e

≤
∑
E∈Ωh

( ∑
e∈∂E

||p̂ − p||20,e
)1/2( ∑

e∈∂E

||ε̃ eh ||20,e
)1/2

.
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From Remark 2.4 and the orthogonality of ϕe,i(ξ) it follows that

||ε̃ eh ||20,e =

∫
e

∣∣ε̃ eh∣∣2dξ =

ne
k+1−1∑
i,j=0

(εh)e,i(εh)e,j

∫
e

ϕe,i(ξ)ϕe,j(ξ)dξ =

ne
k+1−1∑
i,j=0

(εh)e,i(εh)e,j |e| δij

=

ne
k+1−1∑
i

∣∣(εh)e,i
∣∣2 |e| .

This relation, Assumption (S1) and hE . |e| /|E| from (M2) imply that

∑
e∈∂E

||ε̃ eh ||20,e =
∑
e∈∂E

|e|
ne
k+1−1∑
i=0

|(εh)e,i|2 . h−1
E |||εh|||

2
E
. (42)

Since g = p on boundary Γ, inequality (42) combined with inequality (31a) and the Cauchy-Schwarz in-
equality yields the estimate:

|A2| =
∣∣∣∣ ∑
E,∈Ωh

[(
ΠE
k+1(K∇p̂ )

)I
, εh
]
E
− 〈g, εh〉h

∣∣∣∣ . ∑
E∈Ωh

h
k+5/2
E ||p||k+3,E h

−1/2
E |||εh|||E

. hk+2

( ∑
E∈Ωh

||p||2k+3,E

)1/2( ∑
E∈Ωh

|||εh|||2E

)1/2

. hk+2||p||k+3,Ω |||εh|||Xh
. (43)

The assertion of the theorem follows from combining the estimates for A1 and A2 in (39) and (43).

5. Convergence of the scalar variable

The main result of this section is the following convergence theorem for the approximation of the scalar
variable.
Theorem 5.1 Let k be a non-negative integer number and p ∈ Hk+3(Ω) be the exact solution of Prob-
lem (1a)-(1c). Let ph ∈ Qh be the solution of (5a)-(5b) under assumption (HG). Then, there holds

|||pI − ph|||Qh
. hk+2||p||k+3,Ω. (44)

The proof of this theorem is postponed to subsection 5.3 as it requires the lifting operator and the discrete
inf-sup condition, which are presented in subsections 5.1 and 5.2.

5.1. Lifting operator

Consider E ∈ Ωh. There exists a local lifting operator RE : XE → H(div, E) such that:

(R1) for every vh ∈ Xh it holds:

divRE(vh) = D̃IVvh in E (45a)

nE,e ·RE(vh) = ṽ eh on every e ∈ ∂E (45b)

(R2) for every vector field whose components have a (k + 1)-degree polynomial restriction on E, i.e.,

v|E ∈
(
Pk+1(E)

)d
, it holds:

RE((v|E )I) = v|E
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(R3) for every vh ∈ Xh, it holds

ρ∗ |E| |vh|2E ≤ ||RE(vh)||20,E ≤ ρ∗ |E| |vh|2E ,

where |vh|2E is defined in (22).

Remark 5.1 The locally lifted field RE(vh) only depends on the degrees of freedom of vh of cell E. Here,
as before, we prefer to use the more elegant notation RE(vh) instead of RE((vh)E) or RE(vE).

Remark 5.2 In view of the stability condition (S1), condition (R3) is equivalent to

ρ∗
σ∗
|||vh|||2E ≤ ||RE(vh)||20,E ≤

ρ∗

σ∗
|||vh|||2E . (46)

By combining the local lifting operators, we define a global lifting operator R : Xh →
(
L2(Ω)

)d
, which is

such that R(vh)|E = RE(vh). As is usual in the mimetic technology, the lifting operator is a valuable tool
in the convergence analysis, but is not needed in any practical implementation of the method. Furthermore,
a lifting operator satisfying the conditions listed above is not unique; however, only its existence is needed
in the analysis. The existence can be proved as in [11, Chapter 3] or through direct construction by solving
numerically the system of equations (45a)-(45b), for example, by the BDMk+1 − Pk scheme, on the sub-
partition Sh of assumption (HG).

Using the lifting operator we can prove this lemma, which will be useful in the proof of Theorem 5.1.
Lemma 5.1 Let (u, p) be the exact solution of Problem (1a)-(1c) with p ∈ Hk+3(Ω), where k is a non-
negative integer number. Let (uh, ph) ∈ Xh×Qh be the solution of (5a)-(5b) under assumption (HG). Then,
for every vh ∈ Xh it holds that[

ph − pI,DIV vh
]
Qh

. hk+2||p||k+3,Ω |||vh|||Xh
(47)

Proof. We decompose the inner product as in (17), we note that DIVvh =
(
D̃IVvh

)I
, we use (19) and we

note that D̃IVvh|E is a polynomial of degree k on E to obtain:[
pI,DIVvh

]
Qh

=
∑
E∈Ωh

[
pI,DIVvh

]
E

=
∑
E∈Ωh

∫
E

p D̃IVvh dV. (48)

We substitute (45a) above and integrate by parts on each cell, we sum over all the cells and note that
nE,e · RE(vh) only depends on the degrees of freedom of edge/face e and takes opposite signs on the two
sides of each internal edge/face:∑

E∈Ωh

∫
E

pD̃IVvh dV =
∑
E∈Ωh

(
−
∫
E

∇p ·RE(vh) dV +
∑
e∈∂E

∫
e

nE,e ·RE(vh)p dS

)

= −
∫

Ω

∇p ·RE(vh) dV +
∑

e∈Eh∩Γ

∫
e

nE,e ·RE(vh)p dS. (49)

The last term above is further developed by using (45b) and (6) (with the boundary condition g = p|Γ):∑
e∈Eh∩Γ

∫
e

nE,e ·RE(vh)p dS =
∑

e∈Eh∩Γ

∫
e

ṽ ehp dS = 〈p,vh〉h . (50)

Combining (49) and (50) in (48) yields[
pI,DIVvh

]
Qh

= −
∫

Ω

∇p ·RE(vh) dV + 〈p,vh〉h . (51)

Using scheme’s equation (5a) and (51), we transform the left-hand side of (47) as follows[
ph − pI,DIVvh

]
E

=
[
uh,vh

]
E

+ 〈p,vh〉h −
[
pI,DIVvh

]
E

=
[
uh,vh

]
E

+

∫
Ω

∇p ·RE(vh) dV.
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We add and subtract ∇p̂ , where p̂ is the (k + 2)-interpolant of p as in (M4):∫
E

∇p ·RE(vh) dV =

∫
E

∇p̂ ·RE(vh) dV +

∫
E

∇(p− p̂ ) ·RE(vh) dV. (52)

We integrate by parts, use again (45a)-(45b) and (24) to develop the first term in the right-hand side of (52):∫
E

∇p̂ ·RE(vh) dV = −
∫
E

p̂ divRE(vh) dV +
∑
e∈∂E

∫
∂e

p̂nE,e ·RE(vh) dS

= −
∫
E

p̂ D̃IVvh dV +
∑
e∈∂E

∫
e

p̂ ṽh dS

=
[(

ΠE
k+1(K∇p̂ )

)I
,vh
]
E
. (53)

We substitute (53) in (52) and add and subtract uI to obtain the final expression:∑
E

([
uh,vh

]
E

+

∫
E

∇p ·RE(vh) dV

)

=
∑
E∈Ωh

([
uh − uI,vh

]
E

+
[(

u + ΠE
k+1(K∇p̂ )

)I
,vh
]
E

+

∫
E

∇(p− p̂ ) ·RE(vh) dV

)
= T1 + T2 + T3. (54)

To evaluate term T1, we apply the Cauchy-Schwarz inequality, definition (20) and the result of Theorem 4.1:

T1 ≤
∑
E∈Ωh

|||uh − uI|||
E
|||vh|||E ≤

( ∑
E∈Ωh

|||uh − uI|||2
E

)1/2 ( ∑
E∈Ωh

|||vh|||2E

)1/2

= |||uh − uI|||
Xh
|||vh|||Xh

. hk+2||p||k+3,Ω |||vh|||Xh

To evaluate term T2, we apply the Cauchy-Schwarz inequality, definition (20), substitute u = −K∇p, and
apply Lemma 3.4:

T2 ≤
∑
E∈Ωh

∣∣∣∣∣∣(u + ΠE
k+1(K∇p̂ )

)I∣∣∣∣∣∣
E
|||vh|||E

≤

( ∑
E∈Ωh

∣∣∣∣∣∣(− K∇p+ ΠE
k+1(K∇p̂ )

)I∣∣∣∣∣∣2
E

)1/2 ( ∑
E∈Ωh

|||vh|||2E

)1/2

=

( ∑
E∈Ωh

h
2(k+2)
E ||p||2k+3,E

)1/2

|||vh|||Xh
. hk+2||p||k+3,Ω|||vh|||Xh

.

To evaluate term T3, we apply the Cauchy-Schwarz inequality twice, the error estimate in (M4) and the
equivalence in (46):

T3 ≤
∑
E∈Ωh

||∇(p− p̂ )||0,E ||RE(vh)||0,E ≤

( ∑
E∈Ωh

||∇(p− p̂ )||20,E

)1/2( ∑
E∈Ωh

||RE(vh)||20,E

)1/2

.

( ∑
E∈Ωh

h
2(k+2)
E |p|2k+3,E

)1/2( ∑
E∈Ωh

|||vh|||2E

)1/2

. hk+2||p||k+3,Ω |||vh|||Xh
.

The assertion of the lemma follows by combining the estimates for T1, T2, and T3 in (54).
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5.2. Discrete inf-sup condition

Lemma 5.2 For any scalar grid function qh ∈ Qh, there exists a vector grid function vqh ∈ Xh such that[
DIV vqh, qh

]
Qh

= |||qh|||2Qh
(55a)

|||vqh|||Xh
. |||qh|||Qh

(55b)

Proof. The inf-sup condition can be proved by adapting a similar proof from [44]. Consider qh ∈ Qh and
q̃h ∈ L2(Ω), which is the piecewise k-degree polynomial on Ωh given by (14). We recall that (q̃h)I = qh
and that ||q̃h||0,Ω = |||qh|||Qh

. Consider a ball B that contains domain Ω and the function q̃ exth that extends

q̃h by zero in the region B\Ω. Now, let ψ ∈ H2(B) be the solution of ∆ψ = q̃ exth in B with homogeneous
conditions on the boundary ∂B. Since B is H2-regular and q̃ exth is zero outside Ω, we have that

||ψ||2,Ω ≤ ||ψ||2,B ≤ C∗B ||q̃ exth ||0,B = C∗B ||q̃h||0,Ω = C∗B |||qh|||Qh
, (56)

where constant C∗B is a positive constant independent of ψ and h. Since ψ ∈ H2(B) we have that ∇ψ ∈
(H1(B))d and ∇ψ|Ω ∈ (H1(Ω))d ⊂ VΩh

, and, thus, the interpolant of ∇ψ in Xh is well-defined. Take

vqh = (∇ψ)I. We immediately have that

DIVvqh = DIV (∇ψ)I = (∆ψ)I = (q̃h)I = qh,

which proves (55a). Then, Lemma 3.3 implies that

|||vqh|||
2
E

= |||(∇ψ)I|||2
E
. ||∇ψ||20,E + h2

E |∇ψ|21,E . ||ψ||22,E .

Summing over all E ∈ Ωh and using the H2-regularity inequality (56) prove (55b):

|||vqh|||
2
Xh

=
∑
E∈Ωh

|||vqh|||
2
E
.
∑
E∈Ωh

||ψ||22,E . ||ψ||22,Ω . ||q̃h||20,Ω . |||qh|||2Qh
.

This concludes the proof of the Lemma.

Now, consider the mesh-dependent norm inXh defined as |||vh|||2DIV
= |||vh|||2Xh

+|||DIVvh|||2Qh
. If vqh is the

flux associated with qh through the proof of Lemma 5.2 we know that DIVvqh = qh. We add |||DIVvqh|||Qh
=

|||qh|||Qh
to both sides of (55b) and we have that |||vqh|||DIV . |||qh|||Qh

. Using this inequality and both (55a)-
(55b) we immediately find that

sup
vh∈Xh\{0}

[
DIVvh, qh

]
Qh

|||vh|||DIV

≥

[
DIVvqh, qh

]
Qh

|||vqh|||DIV

=
|||qh|||2Qh

|||vqh|||DIV

& |||qh|||Qh
.

Dividing both sides by |||qh|||Qh
and taking the infimum on qh ∈ Qh gives the standard form for the discrete

inf-sup inequality. We formally state this result, which can be seen as a corollary of Lemma 5.2, as follows
by introducing the “inf-sup constant” β∗ > 0.

Corollary 5.1 There exists a strictly positive constant β∗, which is independent of h, such that

inf
qh∈Qh\{0}

sup
vh∈Xh\{0}

[
DIV vh, qh

]
Qh

|||vh|||DIV |||qh|||Qh

≥ β∗.

5.3. Proof of Theorem 5.1

Let vqh ∈ Xh be the flux corresponding to qh = ph − pI in the discrete inf-sup condition of Lemma 5.2.
Using Lemma 5.1 and 5.2 we have that

|||ph − pI|||2Qh
=
[
ph − pI,DIVvqh

]
Qh

. hk+2||p||k+3,Ω |||vqh|||Xh
. hk+2||p||k+3,Ω |||ph − pI|||Qh

, (57)

which implies the assertion of Theorem 5.1.
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5.4. Error estimates for the polynomial approximation of the scalar unknown

According to Remark 2.4, we can compute the polynomial p̃h inside each cell E through (14) by using
only the degrees of freedom of the mimetic solution ph pertinent to that cell. This polynomial provides a
pointwise approximation of the exact solution p for k ≥ 0 and its gradient ∇p for k > 0. The accuracy of
such an approximation is stated in the following theorem.

Theorem 5.2 Let k be a non-negative integer number and p ∈ Hk+3(Ω) the exact solution of Problem (1a)-
(1c). Let ph ∈ Qh be the solution of (5a)-(5b) under assumption (HG), and p̃h the piecewise polynomial
function that in each cell E is given by (14). Then, it holds:

||p− p̃h||0,Ω + h|p− p̃h|1,Ω . hk+1||p||k+3,Ω.

Proof. Adding and subtracting p̃IE and using the triangle inequality yield:

||p− p̃h||20,Ω =
∑
E∈Ωh

||p− p̃h||20,E .
∑
E∈Ωh

(
||p− p̃IE ||

2
0,E + ||p̃IE − p̃h||

2
0,E

)
.

Consider cell E. As noted in Remark 2.4, we have that p̃IE = ΠE
k (p). Using the estimate for the projection

operator yields

||p− p̃IE ||0,E = ||p−ΠE
k (p)||0,E . hk+1

E ||p||k+1,E ,

so that ∑
E∈Ωh

||p− p̃IE ||
2
0,E . h2(k+1)

∑
E∈Ωh

||p||2k+1,E . h2(k+1)||p||2k+1,Ω.

The second term can be estimated by first noting that

||p̃IE − p̃h||
2
0,E = || ˜(pI − ph)||20,E = |||pI − ph|||2E

and, then, using the result of Theorem 5.1:∑
E∈Ωh

||p̃IE − p̃h||
2
0,E =

∑
E∈Ωh

|||pI − ph|||2E = |||pI − ph|||2Qh
. h2(k+2)||p||2k+3,Ω.

An O(hk) estimate can be derived for |p− p̃h|1,Ω by repeating the same argument since a standard inverse
inequality implies that

||∇ ˜(pI − ph)||0,E . h−1
E || ˜(pI − ph)||0,E . h−1

E |||p
I − ph|||E .

The assertion of the theorem follows by combining together these estimates.

Remark 5.3 The piecewise polynomial approximation offered by p̃h does not use the information provided
by the flux approximation uh. A better pointwise approximation to the exact solution p and its gradients
could be given by devising some special post-processing technique as was done for the low-order MFD method
in [22] and for the lowest-order version of this method (i.e., for k = 0) in [8, 12]. Post-processing for
arbitrary k is currently under development and will be the content of a future paper.

6. Numerical Experiments

The numerical experiments presented in this section are aimed to confirm the a priori analysis of Sections 4
and 5. We consider here only the case d = 2; for d = 3 we expect to see the same behavior. In a preliminary
stage, the consistency of the method i.e., the exactness of these methods for polynomial solutions, has been
tested numerically by solving problem (1a)-(1c) with boundary and source data determined by p(x, y) =
xm + ym on different set of polygonal meshes and for m = 1 to 5. In all the cases, the method based on
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(M1) (M2) (M3)

Fig. 2. The first mesh of mesh familiesM1 (left panel),M2 (middle panel),M3 (right panel) that are used in the convergence

and comparison tests of the numerical experiment section. The mesh cells in M1 are randomized quadrilaterals. The mesh

cells in M2 are mainly smoothly remapped hexagons: two quadrilateral cells close the domain at opposite bottom-left and
top-right-corners, while all the other cells are hexagons with possible degeneracy (two parallel edges) on the domain boundary.

The mesh cells in M3 are regular non-convex octagons, cut at right and top boundaries to fit into the unit square domain.

polynomials of degree k ≥ m provided errors whose magnitude was of the order of the arithmetic precision,
thus confirming this property. These results are not reported here.

To study the accuracy of the method we solve the diffusion equation on the domain Ω =]0, 1[×]0, 1[ using
the variable diffusion coefficient:

K(x, y) = ex+y I +

(
1 + y2 −xy
−xy 1 + x2

)
.

The forcing term in (1b) and the Dirichlet boundary condition on ∂Ω are set in accordance with the exact
solution:

p(x, y) = e−2πy sin(2πx) + cos(2π(x+ 2y)).

The performance of the mixed mimetic method are investigated by evaluating the rate of convergence on
three different sequences of five meshes, labeled by M1, M2, and M3, respectively. Fig. 2(a)-2(c) show the
first mesh of each sequence. The meshes inM1 are built by partitioning the domain Ω into square cells and
relocating each interior node to a random position inside a square box centered at that node. The sides of
this square box are aligned with the coordinate axis and their lenght is equal to 0.8 times the minimum
distance between two adjacent nodes of the initial square mesh.

The meshes in M2 are built as follows. First, we determine a primal mesh by remapping the position
(x̂ , ŷ ) of the nodes of an uniform square partition of Ω by the smooth coordinate transformation (see, for
example, [19]):

x = x̂ + 0.1 sin(2πx̂ ) sin(2πŷ ),

y = ŷ + 0.1 sin(2πx̂ ) sin(2πŷ ).

The corresponding mesh of M2 is built from the primal mesh by splitting each quadrilateral cell into
two triangles and connecting the barycenters of adjacent triangular cells by a straight segment. The mesh
construction is completed at the boundary by connecting the barycenters of the triangular cells close to the
boundary to the midpoints of the boundary edges and these latters to the boundary vertices of the primal
mesh.

The meshes in M3 are obtained by filling the unit square with a suitably scaled non-convex octagonal
reference cell, which is cut at the right and top domain boundaries to fit the unit square domain Ω.

All the meshes are parametrized by the number of partitions in each direction. The starting mesh of every
sequence is built from a 5× 5 regular grid, and the refined meshes are obtained by doubling this resolution.

For each calculation we consider the relative errors
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EXh
=
|||uI − uh|||Xh

|||uI|||
Xh

, EQh
=
|||pI − ph|||Qh

|||pI|||
Qh

, EL2 =
||p− p̃h||0,Ω
||p||0,Ω

, EH1 =
|p− p̃h|1,Ω
|p|1,Ω

.

Errors EXh
and EQh

are both expected to decrease to zero proportionally to O(hk+2) in accordance with
Theorems 4.1 and 5.1. Errors EL2 and EH1 are expected to decrease to zero proportionally to O(hk+1) and
O(hk), respectively, in accordance with Theorem 5.2.

In Figures 3-5 we report the log-log plots of EXh
(left plots) and EQh

(right plots) versus the mesh size
parameter h for calculations using mesh families M1, M2, and M3. In Figure 6 we report the log-log plots
of EL2 and EH1 versus the mesh size parameter h for calculations using the meshes in M1. All calculations
were carried out by using the mixed MFD method based on polynomials of degree from k = 0 to 4 as
indicated in the captions.

The convergence rates are reflected by the slope of each error curve, which has to be compared with the
exact slope shown in the plot by a triangle closed to each curve and indicated by the corresponding integer
number. The rates observed experimentally for the flux approximation are always in good agreement with
the estimate of Theorem 4.1 and the errors measured in the Xh-norm decrease proportionally to hk+2. Also,
the approximation of the exact solution and its gradient that are provided by the piecewise polynomial
function p̃h and ∇p̃h behaves as expected from Theorem 5.2, and the errors measured in the L2- and energy
norm decrease proportionally to hk+1 and hk. We show these error plots only for the calculations usingM1

as for the other meshes the behavior is the same. Instead, the approximation error EQh
behaves as stated

by Theorem 5.1 only for the lowest-order accurate scheme, i.e., for k = 0, where error EQh
decreases like

O(h2). For k ≥ 1, an ultraconvergence effect is visible for the three mesh familiesM1,M2,M3, as error EQh

decreases like O(hk+3) instead of O(hk+2) as we would expect from Theorem 5.1. An extensive validation on
different kind of meshes, exact solutions and constant and variable diffusion tensors (results are not reported
here) confirms that this effect seems to persist, and, therefore, to be quite general. Currently, we do not
have a theoretical explanation of this phenomenon even if we may conjecture a connection with the nature
of the degrees of freedom of the scalar variable ph. In fact, error EQh

is a straightforward measure of how
well the polynomial moments pI of the exact solution p are approximated by the degrees of freedom of the
mimetic approximation ph.

7. Conclusions

We presented the new family of mimetic finite difference schemes that extends to arbitrary order of
accuracy the approximation of the scalar unknown and the flux of [19]. The well-posedness of the method
and the convergence of the approximation are proved theoretically and convergence estimates for both the
scalar and the flux variable are derived. The behavior of the method in solving diffusion problems with
variable diffusion tensor is investigated experimentally and the numerical results confirm the convergence
rates that are expected from the theory. An ultraconvergence effects is visible for the scalar variable when the
error is measured in the mesh-dependent norm induced by the mimetic inner product for scalar functions.
A complete understanding of this phenomenon will be the topic of a future work.
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Fig. 3. Error curves EXh
(left plot) and EQh

(right plot) with respect to the mesh size h using mesh family M1 of randomized

quadrilaterals. The MFD method uses polynomials of degree k = 0 (circles), k = 1 (squares), k = 2 (diamonds), k = 3 (up

triangles), k = 4 (down triangles). Slopes proportional to hk+2 are shown in the left plot. As a superconvergence effect is
present in the scalar approximation, for k ≥ 1, in the right plot we show the slope for h2 (k = 0) and the slopes proportional

to hk+3 for k ≥ 1.
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Fig. 4. Error curves EXh
(left plot) and EQh

(right plot) with respect to the mesh size h using mesh family M2 of smoothly
remapped hexagons. The MFD method uses polynomials of degree k = 0 (circles), k = 1 (squares), k = 2 (diamonds), k = 3

(up triangles), k = 4 (down triangles). Slopes proportional to hk+2 are shown in the left plot. As a superconvergence effect is

present in the scalar approximation, for k ≥ 1, in the right plot we show the slope for h2 (k = 0) and the slopes proportional
to hk+3 for k ≥ 1.
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Fig. 5. Error curves EXh
(left plot) and EQh

(right plot) with respect to the mesh size h using mesh family M3 of regular

non-convex octagons. The MFD method uses polynomials of degree k = 0 (circles), k = 1 (squares), k = 2 (diamonds), k = 3
(up triangles), k = 4 (down triangles). Slopes proportional to hk+2 are shown in the left plot. As a superconvergence effect is

present in the scalar approximation, for k ≥ 1, in the right plot we show the slope for h2 (k = 0) and the slopes proportional

to hk+3 for k ≥ 1.
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Fig. 6. Error curves EL2 (left plot) and EH1 (right plot) with respect to the mesh size h using mesh family M1 of randomized

quadrilaterals. The MFD method uses polynomials of degree k = 0 (circles), k = 1 (squares), k = 2 (diamonds), k = 3 (up
triangles), k = 4 (down triangles). Slopes proportional to hk+1 and hk are shown in the left and right plot, respectively. The

error curves for the gradient approximation measured by EH1 starts at k = 1.
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